#pragma once
#include "Neuron.h"
Neuron::Neuron(double value)
: outputValue(value)
, gradient(0)
{
}
void Neuron::setOutputValue(double value)
outputValue = value;
double Neuron::transferFunction(double inputValue)
return std::tanh(inputValue);
double Neuron::transferFunctionDerivative(double inputValue)
return 1.0 - (inputValue * inputValue);
void Neuron::feedForward(double inputValue)
outputValue = transferFunction(inputValue);
double Neuron::getWeightedOutputValue(unsigned int outputNeuron) const
if (outputNeuron < outputWeights.size())
return outputValue * outputWeights[outputNeuron];
return 0.0;
void Neuron::createRandomOutputWeights(size_t numberOfWeights)
outputWeights.clear();
for (unsigned int i = 0; i < numberOfWeights; ++i)
outputWeights.push_back(std::rand() / (double)RAND_MAX);
double Neuron::getOutputValue() const
return outputValue;
void Neuron::calcOutputGradients(double targetValue)
double delta = targetValue - outputValue;
gradient = delta * transferFunctionDerivative(outputValue);