This repository has been archived on 2024-12-15. You can view files and clone it, but cannot push or open issues or pull requests.
Neuro/Net.cpp

109 lines
2.3 KiB
C++

#include "Net.h"
Net::Net(std::initializer_list<size_t> layerSizes)
{
if (layerSizes.size() < 3)
{
throw std::exception("A net needs at least 3 layers");
}
for (size_t numNeurons : layerSizes)
{
push_back(Layer(numNeurons));
}
for (auto layerIt = begin(); layerIt != end() - 1; ++layerIt)
{
Layer &currentLayer = *layerIt;
const Layer &nextLayer = *(layerIt + 1);
currentLayer.addBiasNeuron();
currentLayer.connectTo(nextLayer);
}
}
void Net::feedForward(const std::vector<double> &inputValues)
{
Layer &inputLayer = front();
if (inputLayer.size() - 1 != inputValues.size())
{
throw std::exception("The number of input values has to match the input layer size");
}
inputLayer.setOutputValues(inputValues);
for (auto layerIt = begin(); layerIt != end() - 1; ++layerIt)
{
const Layer &currentLayer = *layerIt;
Layer &nextLayer = *(layerIt + 1);
nextLayer.feedForward(currentLayer);
}
}
std::vector<double> Net::getOutput()
{
std::vector<double> result;
const Layer &outputLayer = back();
for (const Neuron &neuron : outputLayer)
{
result.push_back(neuron.getOutputValue());
}
return result;
}
void Net::backProp(const std::vector<double> &targetValues)
{
Layer &outputLayer = back();
if (targetValues.size() != outputLayer.size())
{
throw std::exception("The number of target values has to match the output layer size");
}
std::vector<double> resultValues = getOutput();
size_t numResultValues = resultValues.size();
// calculate rms error
double rmsError = 0.0;
for (unsigned int i = 0; i < numResultValues; ++i)
{
double delta = resultValues[i] - targetValues[i];
rmsError += delta * delta;
}
rmsError = sqrt(rmsError / numResultValues);
// calculate output neuron gradients
for (unsigned int i = 0; i < numResultValues; ++i)
{
outputLayer[i].calcOutputGradients(targetValues[i]);
}
// calculate hidden neuron gradients
for (auto it = end() - 1; (it - 1) != begin(); --it)
{
Layer &hiddenLayer = *(it - 1);
Layer &nextLayer = *it;
for (Neuron &neuron : hiddenLayer)
{
neuron.calcHiddenGradients(nextLayer);
}
}
// update the input weights
for (auto it = end() - 1; it != begin(); --it)
{
Layer &currentLayer = *it;
Layer &prevLayer = *(it - 1);
currentLayer.updateInputWeights(prevLayer);
}
}