More back-propagation code, calculation of output-neuron gradients
This commit is contained in:
parent
7ba16e9e9d
commit
ce88f690cf
26
Net.cpp
26
Net.cpp
@ -59,7 +59,7 @@ std::vector<double> Net::getOutput()
|
|||||||
|
|
||||||
void Net::backProp(const std::vector<double> &targetValues)
|
void Net::backProp(const std::vector<double> &targetValues)
|
||||||
{
|
{
|
||||||
const Layer &outputLayer = back();
|
Layer &outputLayer = back();
|
||||||
|
|
||||||
if (targetValues.size() != outputLayer.size())
|
if (targetValues.size() != outputLayer.size())
|
||||||
{
|
{
|
||||||
@ -67,12 +67,30 @@ void Net::backProp(const std::vector<double> &targetValues)
|
|||||||
}
|
}
|
||||||
|
|
||||||
std::vector<double> resultValues = getOutput();
|
std::vector<double> resultValues = getOutput();
|
||||||
|
unsigned int numResultValues = resultValues.size();
|
||||||
double rmsError = 0.0;
|
double rmsError = 0.0;
|
||||||
for (unsigned int i = 0; i < resultValues.size(); ++i)
|
|
||||||
|
for (unsigned int i = 0; i < numResultValues; ++i)
|
||||||
{
|
{
|
||||||
double delta = resultValues[i] - targetValues[i];
|
double delta = resultValues[i] - targetValues[i];
|
||||||
rmsError += delta * delta;
|
rmsError += delta * delta;
|
||||||
}
|
}
|
||||||
rmsError = sqrt(rmsError / resultValues.size());
|
|
||||||
|
rmsError = sqrt(rmsError / numResultValues);
|
||||||
|
|
||||||
|
for (unsigned int i = 0; i < numResultValues; ++i)
|
||||||
|
{
|
||||||
|
outputLayer[i].calcOutputGradients(targetValues[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (auto it = end() - 1; it != begin(); --it)
|
||||||
|
{
|
||||||
|
Layer &hiddenLayer = *it;
|
||||||
|
Layer &prevLayer = *(it - 1);
|
||||||
|
|
||||||
|
for (auto neuron : hiddenLayer)
|
||||||
|
{
|
||||||
|
//neuron.calcHiddenGradients(prevLayer);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -4,6 +4,7 @@
|
|||||||
|
|
||||||
Neuron::Neuron(double value)
|
Neuron::Neuron(double value)
|
||||||
: outputValue(value)
|
: outputValue(value)
|
||||||
|
, gradient(0)
|
||||||
{
|
{
|
||||||
|
|
||||||
}
|
}
|
||||||
@ -52,3 +53,10 @@ double Neuron::getOutputValue() const
|
|||||||
{
|
{
|
||||||
return outputValue;
|
return outputValue;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void Neuron::calcOutputGradients(double targetValue)
|
||||||
|
{
|
||||||
|
double delta = targetValue - outputValue;
|
||||||
|
gradient = delta * transferFunctionDerivative(outputValue);
|
||||||
|
}
|
||||||
|
|
||||||
|
4
Neuron.h
4
Neuron.h
@ -7,6 +7,7 @@ class Neuron
|
|||||||
private:
|
private:
|
||||||
double outputValue;
|
double outputValue;
|
||||||
std::vector<double> outputWeights;
|
std::vector<double> outputWeights;
|
||||||
|
double gradient;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
Neuron(double value = 1.0);
|
Neuron(double value = 1.0);
|
||||||
@ -18,4 +19,7 @@ public:
|
|||||||
double getWeightedOutputValue(unsigned int outputNeuron) const;
|
double getWeightedOutputValue(unsigned int outputNeuron) const;
|
||||||
void createRandomOutputWeights(unsigned int numberOfWeights);
|
void createRandomOutputWeights(unsigned int numberOfWeights);
|
||||||
double getOutputValue() const;
|
double getOutputValue() const;
|
||||||
|
|
||||||
|
void calcOutputGradients(double targetValue);
|
||||||
|
//void calcHiddenGradients(const Layer &prevLayer);
|
||||||
};
|
};
|
||||||
|
Reference in New Issue
Block a user