Added simple (de-)serialization of (trained) nets
This commit is contained in:
parent
249bd22b67
commit
99ef63e019
11
Layer.cpp
11
Layer.cpp
@ -46,7 +46,7 @@ void Layer::connectTo(const Layer & nextLayer)
|
||||
{
|
||||
for (Neuron &neuron : *this)
|
||||
{
|
||||
neuron.createOutputWeights(nextLayer.sizeWithoutBiasNeuron(), 1.0);
|
||||
neuron.createRandomOutputWeights(nextLayer.sizeWithoutBiasNeuron());
|
||||
}
|
||||
}
|
||||
|
||||
@ -72,12 +72,17 @@ void Layer::updateInputWeights(Layer & prevLayer)
|
||||
void Layer::addBiasNeuron()
|
||||
{
|
||||
push_back(Neuron(1.0));
|
||||
hasBiasNeuron = true;
|
||||
m_hasBiasNeuron = true;
|
||||
}
|
||||
|
||||
bool Layer::hasBiasNeuron() const
|
||||
{
|
||||
return m_hasBiasNeuron;
|
||||
}
|
||||
|
||||
size_t Layer::sizeWithoutBiasNeuron() const
|
||||
{
|
||||
if (hasBiasNeuron)
|
||||
if (m_hasBiasNeuron)
|
||||
{
|
||||
return size() - 1;
|
||||
}
|
||||
|
3
Layer.h
3
Layer.h
@ -7,7 +7,7 @@
|
||||
class Layer : public std::vector < Neuron >
|
||||
{
|
||||
private:
|
||||
bool hasBiasNeuron = false;
|
||||
bool m_hasBiasNeuron = false;
|
||||
|
||||
public:
|
||||
Layer(size_t numNeurons);
|
||||
@ -21,5 +21,6 @@ public:
|
||||
|
||||
void addBiasNeuron();
|
||||
|
||||
bool hasBiasNeuron() const;
|
||||
size_t sizeWithoutBiasNeuron() const;
|
||||
};
|
||||
|
95
Net.cpp
95
Net.cpp
@ -1,5 +1,9 @@
|
||||
#include "Net.h"
|
||||
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
||||
Net::Net(std::initializer_list<size_t> layerSizes)
|
||||
{
|
||||
if (layerSizes.size() < 2)
|
||||
@ -23,6 +27,11 @@ Net::Net(std::initializer_list<size_t> layerSizes)
|
||||
}
|
||||
}
|
||||
|
||||
Net::Net(const std::string &filename)
|
||||
{
|
||||
load(filename);
|
||||
}
|
||||
|
||||
void Net::feedForward(const std::vector<double> &inputValues)
|
||||
{
|
||||
Layer &inputLayer = front();
|
||||
@ -103,5 +112,89 @@ void Net::backProp(const std::vector<double> &targetValues)
|
||||
Layer &prevLayer = *(it - 1);
|
||||
|
||||
currentLayer.updateInputWeights(prevLayer);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Net::save(const std::string &filename)
|
||||
{
|
||||
std::ofstream outFile;
|
||||
outFile.open(filename);
|
||||
if (!outFile.is_open())
|
||||
{
|
||||
throw std::exception("unable to open output file");
|
||||
}
|
||||
|
||||
outFile << size() << std::endl;
|
||||
for (const Layer &layer : *this)
|
||||
{
|
||||
outFile << layer.size() << std::endl;
|
||||
outFile << layer.hasBiasNeuron() << std::endl;
|
||||
|
||||
for (const Neuron &neuron : layer)
|
||||
{
|
||||
size_t numOutputWeights = neuron.getNumOutputWeights();
|
||||
outFile << numOutputWeights << std::endl;
|
||||
|
||||
for (size_t outputWeightIndex = 0; outputWeightIndex < numOutputWeights; ++outputWeightIndex)
|
||||
{
|
||||
outFile << neuron.getOutputWeight(outputWeightIndex) << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
outFile.close();
|
||||
}
|
||||
|
||||
void Net::load(const std::string &filename)
|
||||
{
|
||||
std::ifstream inFile;
|
||||
inFile.open(filename, std::ios::binary);
|
||||
if (!inFile.is_open())
|
||||
{
|
||||
throw std::exception("unable to open input file");
|
||||
}
|
||||
|
||||
clear();
|
||||
|
||||
std::string buffer;
|
||||
|
||||
getline(inFile, buffer);
|
||||
size_t numLayers = std::stol(buffer);
|
||||
|
||||
for (size_t layerIndex = 0; layerIndex < numLayers; ++layerIndex)
|
||||
{
|
||||
|
||||
getline(inFile, buffer);
|
||||
size_t numNeurons = std::stol(buffer);
|
||||
|
||||
getline(inFile, buffer);
|
||||
bool hasBiasNeuron = std::stol(buffer) != 0;
|
||||
|
||||
size_t numNeuronsWithoutBiasNeuron = hasBiasNeuron ? numNeurons - 1 : numNeurons;
|
||||
|
||||
Layer newLayer(numNeuronsWithoutBiasNeuron);
|
||||
if (hasBiasNeuron)
|
||||
{
|
||||
newLayer.addBiasNeuron();
|
||||
}
|
||||
|
||||
for (size_t neuronIndex = 0; neuronIndex < numNeurons; ++neuronIndex)
|
||||
{
|
||||
getline(inFile, buffer);
|
||||
size_t numWeights = std::stol(buffer);
|
||||
|
||||
std::list<double> outputWeights;
|
||||
for (size_t weightIndex = 0; weightIndex < numWeights; ++weightIndex)
|
||||
{
|
||||
getline(inFile, buffer);
|
||||
outputWeights.push_back(std::stod(buffer));
|
||||
}
|
||||
|
||||
newLayer.at(neuronIndex).createOutputWeights(outputWeights);
|
||||
}
|
||||
|
||||
push_back(newLayer);
|
||||
}
|
||||
|
||||
inFile.close();
|
||||
}
|
||||
|
4
Net.h
4
Net.h
@ -8,8 +8,12 @@ class Net : public std::vector < Layer >
|
||||
{
|
||||
public:
|
||||
Net(std::initializer_list<size_t> layerSizes);
|
||||
Net(const std::string &filename);
|
||||
|
||||
void feedForward(const std::vector<double> &inputValues);
|
||||
std::vector<double> getOutput();
|
||||
void backProp(const std::vector<double> &targetValues);
|
||||
|
||||
void save(const std::string &filename);
|
||||
void load(const std::string &filename);
|
||||
};
|
@ -21,7 +21,7 @@ int main()
|
||||
double batchMaxError = 0.0;
|
||||
double batchMeanError = 0.0;
|
||||
|
||||
size_t numIterations = 1000000;
|
||||
size_t numIterations = 100000;
|
||||
for (size_t iteration = 0; iteration < numIterations; ++iteration)
|
||||
{
|
||||
std::vector<double> inputValues =
|
||||
@ -59,6 +59,9 @@ int main()
|
||||
|
||||
myNet.backProp(targetValues);
|
||||
}
|
||||
|
||||
myNet.save("mynet.nnet");
|
||||
Net copyNet("mynet.nnet");
|
||||
}
|
||||
catch (std::exception &ex)
|
||||
{
|
||||
|
@ -111,6 +111,11 @@ double Neuron::getOutputWeight(size_t index) const
|
||||
|
||||
void Neuron::setOutputWeight(size_t index, double value)
|
||||
{
|
||||
outputWeights.at(index) = value;
|
||||
outputWeights.at(index) = value;
|
||||
}
|
||||
|
||||
size_t Neuron::getNumOutputWeights() const
|
||||
{
|
||||
return outputWeights.size();
|
||||
}
|
||||
|
||||
|
1
Neuron.h
1
Neuron.h
@ -32,6 +32,7 @@ public:
|
||||
|
||||
double getOutputWeight(size_t index) const;
|
||||
void setOutputWeight(size_t index, double value);
|
||||
size_t getNumOutputWeights() const;
|
||||
|
||||
private:
|
||||
static double transferFunction(double inputValue);
|
||||
|
@ -12,7 +12,7 @@ void NetLearner::run()
|
||||
double batchMaxError = 0.0;
|
||||
double batchMeanError = 0.0;
|
||||
|
||||
size_t numIterations = 1000000;
|
||||
size_t numIterations = 100000;
|
||||
for (size_t iteration = 0; iteration < numIterations; ++iteration)
|
||||
{
|
||||
std::vector<double> inputValues =
|
||||
@ -57,6 +57,8 @@ void NetLearner::run()
|
||||
|
||||
emit progress((double)iteration / (double)numIterations);
|
||||
}
|
||||
|
||||
myNet.save("mynet.nnet");
|
||||
}
|
||||
catch (std::exception &ex)
|
||||
{
|
||||
|
@ -6,6 +6,8 @@ NeuroUI::NeuroUI(QWidget *parent) :
|
||||
ui(new Ui::NeuroUI)
|
||||
{
|
||||
ui->setupUi(this);
|
||||
|
||||
ui->logView->addItem("Ready.");
|
||||
}
|
||||
|
||||
NeuroUI::~NeuroUI()
|
||||
|
28
mynet.nnet
Normal file
28
mynet.nnet
Normal file
@ -0,0 +1,28 @@
|
||||
3
|
||||
3
|
||||
1
|
||||
3
|
||||
1.04423
|
||||
0.628599
|
||||
0.480053
|
||||
3
|
||||
1.049
|
||||
0.69511
|
||||
0.462104
|
||||
3
|
||||
-2.3429
|
||||
0.830251
|
||||
0.596034
|
||||
4
|
||||
1
|
||||
1
|
||||
1.61567
|
||||
1
|
||||
0.42416
|
||||
1
|
||||
1.03857
|
||||
1
|
||||
0.732838
|
||||
1
|
||||
0
|
||||
0
|
Reference in New Issue
Block a user