159 lines
2.9 KiB
C
159 lines
2.9 KiB
C
|
#pragma once
|
||
|
|
||
|
#include <vector>
|
||
|
|
||
|
class Neuron
|
||
|
{
|
||
|
private:
|
||
|
double outputValue;
|
||
|
std::vector<double> outputWeights;
|
||
|
|
||
|
public:
|
||
|
void setOutputValue(double value)
|
||
|
{
|
||
|
outputValue = value;
|
||
|
}
|
||
|
|
||
|
static double transferFunction(double inputValue)
|
||
|
{
|
||
|
return std::tanh(inputValue);
|
||
|
}
|
||
|
|
||
|
void feedForward(double inputValue)
|
||
|
{
|
||
|
outputValue = Neuron::transferFunction(inputValue);
|
||
|
}
|
||
|
|
||
|
double getWeightedOutputValue(int outputNeuron) const
|
||
|
{
|
||
|
return outputValue * outputWeights[outputNeuron];
|
||
|
}
|
||
|
|
||
|
void createOutputWeights(unsigned int number)
|
||
|
{
|
||
|
outputWeights.clear();
|
||
|
|
||
|
for (unsigned int i = 0; i < number; ++i)
|
||
|
{
|
||
|
outputWeights.push_back(std::rand() / (double)RAND_MAX);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double getOutputValue() const
|
||
|
{
|
||
|
return outputValue;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class Layer : public std::vector < Neuron >
|
||
|
{
|
||
|
public:
|
||
|
Layer(unsigned int numNeurons)
|
||
|
{
|
||
|
for (unsigned int i = 0; i < numNeurons; ++i)
|
||
|
{
|
||
|
push_back(Neuron());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void setOutputValues(const std::vector<double> & outputValues)
|
||
|
{
|
||
|
if (size() != outputValues.size())
|
||
|
{
|
||
|
throw std::exception("The number of output values has to match the layer size");
|
||
|
}
|
||
|
|
||
|
auto valueIt = outputValues.begin();
|
||
|
for (Neuron &neuron : *this)
|
||
|
{
|
||
|
neuron.setOutputValue(*valueIt++);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void feedForward(const Layer &inputLayer)
|
||
|
{
|
||
|
int neuronNumber = 0;
|
||
|
for (Neuron &neuron : *this)
|
||
|
{
|
||
|
neuron.feedForward(inputLayer.getWeightedSum(neuronNumber));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double getWeightedSum(int outputNeuron) const
|
||
|
{
|
||
|
double sum = 0.0;
|
||
|
|
||
|
for (const Neuron &neuron : *this)
|
||
|
{
|
||
|
sum += neuron.getWeightedOutputValue(outputNeuron);
|
||
|
}
|
||
|
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
void connectTo(const Layer & nextLayer)
|
||
|
{
|
||
|
for (Neuron &neuron : *this)
|
||
|
{
|
||
|
neuron.createOutputWeights(nextLayer.size());
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class Net : public std::vector < Layer >
|
||
|
{
|
||
|
public:
|
||
|
Net(std::initializer_list<unsigned int> layerSizes)
|
||
|
{
|
||
|
if (layerSizes.size() < 3)
|
||
|
{
|
||
|
throw std::exception("A net needs at least 3 layers");
|
||
|
}
|
||
|
|
||
|
for (unsigned int numNeurons : layerSizes)
|
||
|
{
|
||
|
push_back(Layer(numNeurons));
|
||
|
}
|
||
|
|
||
|
for (auto layerIt = begin(); layerIt != end() - 1; ++layerIt)
|
||
|
{
|
||
|
Layer ¤tLayer = *layerIt;
|
||
|
const Layer &nextLayer = *(layerIt + 1);
|
||
|
|
||
|
currentLayer.connectTo(nextLayer);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void feedForward(const std::vector<double> &inputValues)
|
||
|
{
|
||
|
Layer &inputLayer = front();
|
||
|
|
||
|
if (inputLayer.size() != inputValues.size())
|
||
|
{
|
||
|
throw std::exception("The number of input values has to match the input layer size");
|
||
|
}
|
||
|
|
||
|
inputLayer.setOutputValues(inputValues);
|
||
|
|
||
|
for (auto layerIt = begin(); layerIt != end() - 1; ++layerIt)
|
||
|
{
|
||
|
const Layer ¤tLayer = *layerIt;
|
||
|
Layer &nextLayer = *(layerIt + 1);
|
||
|
|
||
|
nextLayer.feedForward(currentLayer);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::vector<double> getResult()
|
||
|
{
|
||
|
std::vector<double> result;
|
||
|
|
||
|
const Layer &outputLayer = back();
|
||
|
for (const Neuron &neuron : outputLayer)
|
||
|
{
|
||
|
result.push_back(neuron.getOutputValue());
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
};
|