Plot image classification results
This commit is contained in:
parent
1b9872187d
commit
6d57fa4650
53
flow.py
53
flow.py
@ -49,3 +49,56 @@ model.fit(train_images, train_labels, epochs=5)
|
|||||||
test_loss, test_acc = model.evaluate(test_images, test_labels)
|
test_loss, test_acc = model.evaluate(test_images, test_labels)
|
||||||
|
|
||||||
print("Test accuracy:", test_acc)
|
print("Test accuracy:", test_acc)
|
||||||
|
|
||||||
|
predictions = model.predict(test_images)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_image(i, predictions_array, true_label, img):
|
||||||
|
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
|
||||||
|
plt.grid(False)
|
||||||
|
plt.xticks([])
|
||||||
|
plt.yticks([])
|
||||||
|
|
||||||
|
plt.imshow(img, cmap=plt.cm.binary)
|
||||||
|
|
||||||
|
predicted_label = np.argmax(predictions_array)
|
||||||
|
if predicted_label == true_label:
|
||||||
|
color = "blue"
|
||||||
|
else:
|
||||||
|
color = "red"
|
||||||
|
|
||||||
|
plt.xlabel(
|
||||||
|
"{} {:2.0f}% ({})".format(
|
||||||
|
class_names[predicted_label],
|
||||||
|
100 * np.max(predictions_array),
|
||||||
|
class_names[true_label],
|
||||||
|
),
|
||||||
|
color=color,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_value_array(i, predictions_array, true_label):
|
||||||
|
predictions_array, true_label = predictions_array[i], true_label[i]
|
||||||
|
plt.grid(False)
|
||||||
|
plt.xticks([])
|
||||||
|
plt.yticks([])
|
||||||
|
thisplot = plt.bar(range(10), predictions_array, color="#777777")
|
||||||
|
plt.ylim([0, 1])
|
||||||
|
predicted_label = np.argmax(predictions_array)
|
||||||
|
|
||||||
|
thisplot[predicted_label].set_color("red")
|
||||||
|
thisplot[true_label].set_color("blue")
|
||||||
|
|
||||||
|
|
||||||
|
num_rows = 5
|
||||||
|
num_cols = 5
|
||||||
|
num_images = num_rows * num_cols
|
||||||
|
plt.figure(figsize=(2 * 2 * num_cols, 2 * num_rows))
|
||||||
|
for i in range(num_images):
|
||||||
|
image_idx = random.randint(0, len(test_images) - 1)
|
||||||
|
plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
|
||||||
|
plot_image(image_idx, predictions, test_labels, test_images)
|
||||||
|
plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
|
||||||
|
plot_value_array(image_idx, predictions, test_labels)
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
Reference in New Issue
Block a user